Exploration of UHPC Applications for Montana Bridges – Intermediate TP Meeting

Kirsten Matteson, PhD Michael Berry, PhD James Starke, GRA

UHPC Project Background

- Phase 1 Feasibility
 - We can make UHPC with materials readily available in Montana
- Phase 2 Field Application and Sensitivity Study
 - Changes in constituent materials and batch size
 - Bonding properties and pull-out strengths
- Phase 3 Implementation
 - Concurrent research on the first use of MT-UHPC for field cast joints
 - Investigate constructability issues that may hinder use of MT-UHPC in future applications

Applications Project Scope

Task 1 – Literature Review

Task 2 – Material-Level Evaluation

Intermediate Technical Panel Meeting

Task 3 – Experimental Design of Structural Testing

Task 4 – Structural Testing

Task 5 – Analysis of Results and Reporting

Task 1 - Literature Review

- UHPC has potential for use as a bridge deck overlay material
 - Several studies Iowa State, New Mexico State, and Missouri S&T
 - Thixotropic mix design needed for cross slope and superelevation
 - Most other state DOT's using proprietary mixes and special equipment to mix and place overlays
 - Underlying concrete surface preparation required for adequate bond with UHPC overlays
- Steel girder repair has been proven with large scale testing
 - University of Connecticut
 - All UHPC repair methods were shown to increase capacity compared to undamaged girders.
 - FEA model developed

Task 2 – Material-Level Evaluation

- Investigated 3 UHPC mixes
 - MT-UHPC
 - MT-UHPC with viscosity modifying admixture for thixotropy (MT-UHPC-T)
 - Proprietary thixotropic Ductal mix (Ductal-T)
- Experimental Testing
 - Compression Testing
 - Flexural Testing
 - Direct Tension Testing
 - Slant Shear Testing

Discussion on Thixotropy

UHPC Mixes

- MT-UHPC and MT-UHPC-T
 - Developed from past research at MSU
 - Only difference with MT-UHPC-T is the addition of MasterMatrix UW 450 viscosity modifying admixture
- Ductal-T
 - Proprietary
 - Premix supplied
 - Higher dynamic flows
- Cor-Tuf

Testing – Material Strengths

- Compression ASTM C1856 and C39
 - 7,14, and 28 day strengths on UHPC
 - Bond test day strengths on substrate concrete
- Flexure/Ultimate Tensile ASTM C1609
 - Performed on UHPC at 28 days

Results – Material Strengths

	Flow (in)		Compre	ssive Streng	th, f'c (ksi)	Ultimate Tensile Strength (ksi)			
UHPC Type	Static	Dynamic	7-Day	14-Day	28-Day	Measured	Predicted	Meas/Pred	
MT-UHPC	10.25	-	14.3	15.1	17	3.37	0.978	3.45	
MT-UHPC-T	4	5.5	11.6	-	15.4	2.8	0.931	3.01	
Ductal	4	6.5	15.1	17.3	17.4	3.43	0.989	3.47	

Testing – Direct Tension

- Direct Tension ASTM C1583
 - Create slab of substrate concrete
 - Prepare surfaces typical, cross-hatch, and chipped
 - Apply overlay material
 - Core and prep samples
 - Test in MTS tension

Results – Direct Tension

Results – Direct Tension

Groove	Sample	MT HHDC (:)	MT HIDO T ()	Ductal-T (psi)		
Pattern	Number	MT-UHPC (psi)	MT-UHPC-T (psi)	Ducta Wet 197* 332* 433* 367** - 333 25.90% 343* 297* 320 7.10% 234**	Dry	
	T1	280**	239*	197*	60*	
	T2	210**	146*	332*	11*	
T3 256** T4 251* T5 206**	256**	291*	433*	15*		
	T4	251*	192*	367**	106*	
	T5	206**	208*	-	-	
	T6	234*	-	-	-	
_	Average	239	215	333	48	
	CoV	10.90%	22.60%	433* 15* 367** 106* 333 48 % 25.90% 81.20% 343* - 297* -		
	XH1	220*	148*	343*	60* 11* 15* 106* - 48	
Cuasabatab	XH2	234*	148* 343* -			
Crosshatch -	Average	227	155	320	81.20%	
CoV 3.20% 4.20%	7.10%					
Chipped	C1	252**	<u>-</u>	234**		

^{*}Bond Failure

^{**}Substrate Concrete Failure

Results – Direct Tension

Testing – Slant Shear

- Slant Shear ASTM C882
 - Create 30-degree angle cylinders
 - Prep surfaces (same typical as direct tension)
 - Fill remaining cylinder
 - Test in MTS compression

Results – Slant Shear

Results – Slant Shear

Sample	Minimum Bond Shear Strength (ksi)						
Number	MT-UHPC	MT-UHPC-T	Ductal-T				
1	2.94	3.15	3.13*				
2	2.77	3.33	3.26				
3	2.75	3.31	3.3				
4	2.82	3.37	3.16				
Average	2.82	3.29	3.24				
CoV	3.02%	2.94%	2.23%				

^{*}Bond Failure

Task 2 Summary and Conclusions

- Adequate compressive and tensile strengths
- Both thixotropic mixes demonstrated the desired behavior, but the MT-UHPC-T mix requires further refinement to optimize the UW-450 admixture dosage
- All direct tension surface preparations met the ACI minimum recommendation for concrete repair
 - Surface must be wetted
- All slant shear specimens surpassed the minimum ACI recommendation though only failed at the bond

Project Schedule

		Project Quarter							
Activities	Dates	1	2	3	4	5	6	7	8
Activities		Aug 1 - Oct 31, 2021	Nov 1 - Jan 31, 2022	Feb 1 - Apr 30, 2022	May 1 - Jul 31, 2022	Aug 1 - Oct 31, 2022	Nov 1 - Jan 31, 2023	Feb 1 - Apr 30, 2023	May 1 - Jul 31, 2023
Kick-off Meeting	8/2/2021	X							
Task 0 - Project Management		X	X	Χ	X	X	X	Χ	X
Task 1 - Literature Review		X	X	X	X	X	X	X	X
Task 1 Report	1/31/2022		X						
Task 2 - Material Evaluation		X	X	X					
Task 2 Report	4/29/2022			X					
Intermediate Technical Panel Meeting	5/16/2022				X				
Task 3 - Application(s) Experimental Design					X	X	X		
Task 3 Report	1/6/2023						X		
Task 4 - Testing					X	X	X	X	
Task 4 Report	2/28/2023							X	
Task 5 - Analysis of Results and Reporting								X	X
Draft Final Report	3/31/2023							X	
Project Summary Report	5/15/2023								X
Performance Measures Report	5/15/2023								X
Project Poster	5/15/2023								X
Final Report	7/3/2023								X
Final Presentation and Webinar	7/17/2023								X
Implementation Meeting	7/17/2023								X
Implementation Report	7/31/2023								X

Potential Paths for Tasks 3 and 4

Steel Girder End Repairs Option

• Start with smaller-scale push-off tests to verify materials work

(a) Beam prior to casting; (b) beam with formwork used for casing concrete, and (c) completed push-off

Steel Girder End Repairs Option

- Work towards largescale girders with recommended stud patterns from previous research
- If a similar repair method is investigated for MT-UHPC, the FE modeling approach developed by the University of Connecticut could be useful

Overlay – MT-UHPC Path

- Refine the MT-UPHC-T mix design
 - Remove fly ash?
 - Optimize UW 450 admixture dosage
 - Would require many small batches with strength tests at 7 and 28 days
 - Repeat bond tests on refined mix
- Work towards full size batching for both the altered MT-UHPC and MT-UHPC-T mixes
 - Redo flexure testing
 - Potentially look into shrinkage testing (recommended by Ductal)
- Explore increasing batch size for implementation

Overlay – Proprietary Path

- Focus on **implementation** questions
- Deeper dive into literature review (specifically on Ductal)
 - Unanswered questions regarding this application
 - Structural testing needed, if so where?
- Look further into surface preparation requirements
 - Hydrodemolition or more accurate milling
- Explore MDT needs
 - Suppliers, contractor equipment (standard vs. owning/renting equipment specific to UHPC)
 - For specification this is what machinery you need to use, these are supplier options, etc...
- Look into equipment needed for large scale batch sizing and vibratory screed
 - Currently one made by WALO being used on large scale bridge in Iowa
- Cor-Tuf?

Additional Overlay Path Options

- Develop maturity curves for chosen material (thixotropic MT-UHPC or Ductal, or both?)
- Structural testing either fill a gap(s) that MDT needs to know for implementation or confirming something before implementation
- Example unanswered question does the overlay (in addition to making a good wearing surface and fulfilling overlay needs) increase load carrying capacity?
- Potential large-scale testing
 - Cyclic loading of beam or slab. Then apply overlay and look at strength gain.
 - Bond between slab and overlay
 - Effect of temperature gradient on bond
 - Punching shear

Open Discussion

Thank you!